Using Chi-square Matrix to Strengthen Multi-objective Evolutionary Algorithm
نویسندگان
چکیده
Many complex engineering problems have multi-objectives where each objective is conflicting with others. However, a lot research Jiradej Ponsawat et al. 2 works in optimization by Competent Genetic Algorithm are focused on single objective methods. These algorithms work very well for single objective problems but stumble when trying to discover a large number of solutions naturally occurred in multi-objective problems. There are many multi-objective problems where solutions share common characteristic, for example decomposable multi-objective problems. This characteristic can be exploited to identify and compose these common structures. This work proposes to apply the concept of Building Blocks to improve evolutionary algorithms to tackle such problems. Building Block Identification algorithm is used to guide the crossover operator in order to maintain good Building Blocks and mix them effectively. The proposed method is evaluated by using Building Block Identification guided crossover in a well-known Genetic Algorithm to solve multiple-objective problems. The result shows that the proposed method is effective. Moreover, it obtains a good spread of solutions even when the Building Blocks are loosely encoded.
منابع مشابه
Power System Stability Improvement via TCSC Controller Employing a Multi-objective Strength Pareto Evolutionary Algorithm Approach
This paper focuses on multi-objective designing of multi-machine Thyristor Controlled Series Compensator (TCSC) using Strength Pareto Evolutionary Algorithm (SPEA). The TCSC parameters designing problem is converted to an optimization problem with the multi-objective function including the desired damping factor and the desired damping ratio of the power system modes, which is solved by a SPEA ...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملA MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS
This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...
متن کاملMulti-objective optimization design of plate-fin heat sinks using an Evolutionary Algorithm Based On Decomposition
This article has no abstract.
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کامل